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Details for reconstruction of the drug-target interaction network 

We assembled high-quality physical drug-target interactions on FDA-approved 

drugs from 6 commonly used data sources, and defined a physical drug-target 

interaction using reported binding affinity data: inhibition constant/potency (Ki), 

dissociation constant (Kd), median effective concentration (EC50), or median 

inhibitory concentration (IC50) ≤ 10 µM. Drug-target interactions were acquired 

from the DrugBank database (v4.3)(Law, et al., 2014), the Therapeutic Target 

Database (TTD, v4.3.02)(Zhu, et al., 2012), and the PharmGKB 

database(Hernandez-Boussard, et al., 2008). Specifically, bioactivity data of 

drug-target pairs were collected from three widely used databases: ChEMBL 

(v20)(Gaulton, et al., 2012), BindingDB(Liu, et al., 2007), and IUPHAR/BPS 

Guide to PHARMACOLOGY(Pawson, et al., 2014). In total, 4,978 drug-target 

interactions connecting 732 FDA-approved drugs and 1,915 unique human 

targets (proteins) were used. 

Details for building the human protein-protein interactome 

To build a comprehensive human protein-protein interactome, we assembled data 

from a total of 15 bioinformatics and systems biology databases with multiple 

experimental evidences. Specifically, we focused on high-quality protein-protein 

interactions (PPIs) with five types of experimental evidences: (i) Binary PPIs tested 

by high-throughput yeast-two-hybrid (Y2H) systems from two public available high-
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quality Y2H datasets(Rolland, et al., 2014; Rual, et al., 2005) and one unpublished 

dataset, publicly available at: http://ccsb.dana-farber.org/ interactome-data.html; (ii) 

Kinase-substrate interactions by literature-derived low-throughput or high-

throughput experiments from KinomeNetworkX (Cheng, et al., 2014), Human 

Protein Resource Database (HPRD) (Peri, et al., 2004), PhosphoNetworks(Hu, et 

al., 2014; Newman, et al., 2013), PhosphositePlus (Hornbeck, et al., 2015), dbPTM 

3.0 (Lu, et al., 2013), and Phospho. ELM (Dinkel, et al., 2011); (iii) Literature-

curated PPIs identified by affinity purification followed by mass spectrometry (AP-

MS), Y2H, or by literature-derived low-throughput experiments from BioGRID 

(Chatr-Aryamontri, et al., 2015), PINA (Cowley, et al., 2012), HPRD (Peri, et al., 

2004), MINT (Licata, et al., 2012), IntAct (Orchard, et al., 2014), and InnateDB 

(Breuer, et al., 2013); (iv) Signaling network by literature-derived low-throughput 

experiments as annotated in SignaLink2.0(Fazekas, et al., 2013); and (v) Binary, 

physical PPIs from protein three-dimensional (3D) structures reported in Instruct 

(Meyer, et al., 2013). In this study, all inferred data, including evolutionary analysis, 

gene expression data, and metabolic associations, were excluded. The resulting 

human protein-protein interactome used in this study includes 16,133 PPIs 

connecting 1,915 unique drug-target coding gene products. 
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Details for collecting drug-drug interactions 

Drug-drug interactions (DDIs). We collected clinically reported DDI data from the 

DrugBank database (v4.3) (Law, et al., 2014). Chemical name, generic name or 

commercial name of each drug were standardized by Medical Subject Headings 

(MeSH) and Unified Medical Language System (UMLS) vocabularies (Bodenreider, 

2004) and further transferred to DrugBank ID. In total, 132,768 clinically reported 

DDIs connecting 732 unique FDA-approved drugs were used. 

 

Description of re-constructing drug-disease network 

We collected the known drug-disease associations from several public resources, 

including repoDB (Brown and Patel, 2017), DrugBank (v4.3) (Law, et al., 2014), 

and Drug Central (Ursu, et al., 2017) databases. Compound name, generic name 

or commercial name of each drugs and disease names were standardized by 

MeSH and UMLS vocabularies (Bodenreider, 2004). In total, 1,208 drug-disease 

pairs connecting 732 drugs and 440 diseases were used. 

 

Description of re-constructing drug-side effect network 

We collected the clinically reported drug side effects or adverse drug event (ADE) 

information by assembling data from MetaADEDB (Cheng, et al., 2013), CTD 

(Davis, et al., 2011), SIDER (version 2) (Tatonetti, et al., 2012), and OFFSIDES 
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(Kuhn, et al., 2010). Only ADE data with clinically reported evidence were used. In 

total, 263,805 drug−ADE associations collecting 732 approved drugs and 12,904 

ADEs were used. 

 

Chemical similarity analysis of drug pairs 

We downloaded chemical structure information (SMILES format) from the 

DrugBank database and computed MACCS fingerprints of each drug using Open 

Babel v2.3.1(O'Boyle, et al., 2011). If two drug molecules have a and b bits set in 

their MACCS fragment bit-strings, with c of these bits being set in the fingerprints 

of both drugs, the Tanimoto coefficient (T) (Willett, 2006) of a drug-drug pair is 

defined as: 

𝑇 = 	 $
%&'($

             (S1) 

 

Protein sequence similarity (identity) analysis 

We downloaded the canonical protein sequences of drug targets (proteins) in 

Homo sapiens from Uniprot database (http://www.uniprot.org/). 

Similarity of drug targets. We calculated the protein sequence similarity S*(𝑎, 𝑏) 

of two drug targets a and b using the Smith-Waterman algorithm (Smith and 

Waterman, 1981). 

Similarity of drug pairs. The overall sequence similarity of the drug targets 



6 
 

binding two drugs A and B is determined by equation (S2) by averaging all pairs 

of proteins a and b with 𝑎 ∈ 𝐴  and 𝑏 ∈ 𝐵  under the condition 𝑎 ≠ 𝑏 . This 

condition ensures that for drugs with common targets we do not take pairs into 

account where a target would be compared to itself. 

< S* >=
6

789:;<
∑ S*(𝑎, 𝑏){%,'}                 (S2) 

 

Gene co-expression analysis for drug targets 

We downloaded the RNA-seq data (RPKM value) across 32 tissues from GTEx V6 

release (https://gtexportal.org/home/). For each tissue, we regarded those genes 

with RPKM ≥ 1 in more than 80% samples as tissue-expressed genes. 

Co-expression analysis of drug targets. To measure the extent to which drug 

target-coding genes (a and b) associated with the drug-treated diseases are co-

expressed, we calculated the Pearson’s correlation coefficient (PCC(𝑎, 𝑏)) and the 

corresponding p-value via F-statistics for each pair of drug target-coding genes a 

and b across 32 human tissues. In order to reduce the noise of co-expression 

analysis, we mapped PCC(𝑎, 𝑏)	 into the human protein-protein interactome 

network to build a co-expressed protein-protein interactome network as described 

previously (Cheng, et al., 2014). 

Co-expression analysis of drug pairs. The co-expression similarity of the drug 

target-coding genes associated with two drugs A and B is computed by averaging 
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PCC(𝑎, 𝑏) over all pairs of targets a and b with 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 as below: 

< S$B >=
6

789:;<
∑ |PCC(𝑎, 𝑏)|{%,'}                (S3) 

 

Gene Ontology (GO) similarity analysis for drug targets 

We downloaded the Gene Ontology (GO) annotation for all drug target-coding 

genes from website: http://www.geneontology.org/. We used three types of the 

experimentally validated or literature-derived evidences: cellular component (CC), 

biological processes (BP), and molecular function (MF). 

Similarity of drug targets. We computed GO similarity SDE(𝑎, 𝑏) for each pair of 

drug target-coding genes a and b using a graph-based semantic similarity measure 

algorithm (Wang, et al., 2007) and GOSemSim (Yu, et al., 2010). 

Similarity of drug pairs. The overall GO similarity of the drug target-coding genes 

binding to two drugs A and B is determined by equation (S4), averaging all pairs 

of drug target-coding genes a and b with 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. 

< SDE >=
6

789:;<
∑ SDE(𝑎, 𝑏){%,'}                (S4) 

 

Clinical similarity analysis for drug pairs 

We computed clinical similarities of drug pairs derived from the drug Anatomical 

Therapeutic Chemical (ATC) classification systems (Cheng, et al., 2013). We 

downloaded all ATC codes from the DrugBank database (v4.3) (Law, et al., 2014). 
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The kth level drug clinical similarity (𝑆G) of drugs A and B is defined via the ATC 

codes as below. 

𝑆G(𝐴, 𝐵) =
HIJK(L)∩HIJK(N)
HIJK(L)∪HIJK(N)

               (S5) 

where ATCG represents all ATC codes at the kth level. A score 𝑆%R$(𝐴, 𝐵) is used 

to define the clinical similarity between drugs A and B: 

𝑆%R$(𝐴, 𝐵) = 	
∑ SK(L,N)T
KUV

7
                 (S6) 

Where n represents the five levels of ATC codes (ranging from 1 to 5). 

 

Description of collecting disease-gene network 

We assembled disease-gene annotation data from three commonly used database: 

1) The OMIM database (http://www.omim.org/) (Amberger, et al., 2015); 2) The 

Comparative Toxicogenomics Database (http://ctdbase.org/) (Davis, et al., 2015); 

3) HuGE Navigator (Yu, et al., 2008). We annotated all protein-coding genes using 

gene Entrez ID, chromosomal location, and the official gene symbols from the 

NCBI database(Coordinators, 2016). In total, 23,080 disease-genes pairs 

connecting 440 diseases and 1,915 drug targets-coding genes were used. 

 

Preprocess of association networks 

For the homogeneous interaction networks (e.g., drug-drug interaction network) 

and similarity networks (e.g., drug chemical similarity network), we use AROPE 
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to extract features from these networks directly. For the association networks, 

i.e., drug-disease, drug-side-effect, and protein-disease networks, we construct 

the corresponding similarity networks based on the Jaccard similarity coefficient 

first, and then run the AROPE model on these similarity networks. Jaccard 

similarity is a common statistic used for characterizing the similarity and diversity 

between two sets of samples. Taking the drug-disease association network as an 

example, we use the following formula to measure the similarity between drug 𝑖 

and drug j: 

Sim(𝑖, 𝑗) = \]^_`%_`:∩]^_`%_`a\
\]^_`%_`:∪]^_`%_`a\

           (S7) 

Where 𝐷𝑖𝑠𝑒𝑎𝑠𝑒^ denotes the set of diseases of drug 𝑖. Then we run the AROPE 

algorithm on this similarity network to obtain the feature representation of drugs. 

In the same manner, we can construct the similarity networks of proteins. 

     In summary, we construct 8 types of similarity networks for drugs, based on 

(1) drug-disease associations, (2) drug-side-effect associations, (3) chemical 

structures, (4) therapeutic similarity, (5) primary protein sequence-derived drug-

drug similarity, (6) biological process, (7) cellular component, (8) molecular 

function. Similarly, we construct 5 types of similarity networks for proteins, based 

on (1) gene/protein-disease associations, (2) primary protein sequence, (3) 

biological process, (4) cellular component, (5) molecular function. With 13 similarity 

networks and another two interaction networks (drug-drug interactions and protein-

protein interactions), we can learn the low-dimensional feature vector 
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representations of drugs and proteins through network embedding scheme. 

 

Baseline Methods 

We compare our method against five previously-proposed methods, including 

NeoDTI (Wan, et al., 2018), deepDTnet (Zeng), RLSWNN (van Laarhoven and 

Marchiori, 2013), KBMF2K (Gonen, 2012) and NetLapRLS (Xia, et al., 2010). 

Among these methods, NeoDTI, and deepDTnet can integrate multiple 

heterogeneous information to predict new DTIs, while RLSWNN, KBMF2K and 

NetLapRLS are not particularly designed to exploit multiple drug or protein network 

data for DTI prediction. To make a fair comparison, we followed the same strategy 

as  NeoDTI (Wan, et al., 2018) to integrate multiple networks into a single network 

for RLSWNN, KBMF2K and NetLapRLS in our comparison tests. In particular, we 

combined multiple networks into a single network by assigning the edge weight 

𝑝^,f = 1 −∏ j1 − 𝑝^,f
(G)kG , where 𝑝^,f

(G)𝜖[0,1] is the interaction probability or similarity 

between node 𝑖 and node 𝑗 in network 𝑘𝜖{1,2,… ,𝐾}, where K stands for the total 

number of networks. For the hyperparameters used in the baseline methods, we 

tuned them to get the best performance in the cross validation. We will briefly 

describe these methods below. 

1. NeoDTI: Neural integration of neighbor information for DTI prediction is a 

nonlinear end-to-end learning model that integrates diverse information from 

heterogeneous network data via a number of information passing and 
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aggregation operations, and automatically learns topology-preserving 

representations of drugs and targets to make predictions. We chose node 

embedding dimension 𝑑 from {256,512,1024}, the dimension of the edge-type 

specific projection matrices 𝑘  from {256,512,1024} . We used the Adam 

optimizer (Kingma and Ba, 2014) with the learning rate 0.001 to perform 

gradient descent. 

2. deepDTnet: A network-based, deep learning methodology (Zeng, et al., 2019) 

for drug repositioning, that integrates a deep neural network algorithm for 

network embedding, which embeds each vertex in a network into a low-

dimensional vector space, and a Positive-Unlabeled (PU)-matrix completion 

algorithm for prediction, which is a vector space projection scheme for predict 

drug-target interactions. We designed different network architecture with 

different number of layers and different number of hidden nodes. We chose 

embedding dimension 𝑑 of each network from {50,100,200}, according to the 

prediction performance. The biased value 𝛼 and regulation parameter 𝜆 in 

PU-matrix completion are selected over the grid search. Specifically, we chose 

𝛼 from {0.1,0.2,… ,1}, we chose 𝜆 from {0.005,0.01,0.05,0.1,0.2}. 

3. RLSWNN: Regularized Least Squares with Weighted Nearest Neighbors (van 

Laarhoven and Marchiori, 2013), which uses a weighted nearest neighbor 

procedure for inferring a profile for a drug compound by using interaction 

profiles of the compounds in the training data. The regularization parameter 
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was selected from {0.1,0.2,… ,1}. 

4. KBMF2K: Kernelized Bayesian matrix Factorization method (Gonen, 2012), 

which uses a kernelized Bayesian matrix factorization with twin kernels to 

predict drug-target interactions. KBMF2K combines dimensionality reduction, 

matrix factorization and binary classification for predicting drug-target 

interaction networks using only chemical similarity between drugs compounds 

and genomic similarity between target proteins. This approach proposed a joint 

Bayesian formulation of projecting drug compounds and target proteins into a 

unified subspace using the similarities and estimating the interaction network 

in that subspace. The subspace dimensionality parameter 𝑅 was chosen from 

{5,10, …,40}. 

5. NetLapRLS: An algorithm that is based on the bipartite local model concept 

(Xia, et al., 2010), which perform two sets of predictions, one from the drug side 

and one from the target side, and then aggregates these predictions to give the 

final prediction scores for the potential interaction candidates. The ratios	𝜆|}/

𝜆|6  and 	𝜆*}/𝜆*6 were chosen from {10(�, 10(�,… ,10} and the parameters 

	𝛽| and 	𝛽* were selected from {3 ∙ 10(�, 3 ∙ 10(�, … ,3 ∙ 100} 
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Supplementary Tables 
 

Supplementary Table S1. The number of nodes of individual types in the 

constructed heterogeneous drug-target-disease network. 

Type of node Count 

Drug 732 

Protein 1,915 

Disease 440 

Side-effect 12,904 

Total 15,991 

 
 
 

Supplementary Table S2. The size of individual networks or association 

matrices in the constructed heterogeneous network. 

Type of edge Count 

Drug-Protein 4,978 

Drug-Drug 132,768 

Drug-Disease 1,208 

Drug-Side-effect 263,805 

Protein-Protein 16,133 

Protein-Disease 23,080 

Total 441,972 
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Supplementary Table S3. Overlap analysis of two external validations collected 
from the DrugCentral database (Ursu, et al., 2018) and ChEMBL database 
(Mendez, et al., 2018) respectively. 
 

 # of drugs #of proteins # of interactions 
DrugCentral 446 483 1507 

ChEMBL 559 826 3034 
overlap 371 409 589 

 
 
 
Supplementary Table S4. The area under the receiver operating characteristic 
curve (AUROC) and the area under precision-recall curve (AUPR) during cross-
validation on the gold standard drug-target network. We performed 10 times 
random 5-fold cross-validation and standard derivation was provided. 
 

Methods AUROC AUPR 
AOPEDF 0.985±0.0009 0.985±0.0009 
NeoDTI 0.971±0.0017 0.970±0.0019 
deepDTnet 0.965±0.0011 0.969±0.0013 
RLSWNN 0.949±0.0024 0.955±0.0029 
KBMF2K 0.936±0.0011 0.947±0.0012 
NetLapRLS 0.923±0.0018 0.936±0.0013 
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Supplementary Table S5. Performance of ablation analysis of different 
components implemented in AOPEDF. 
 

 AUROC AUPR 
𝐿𝐼𝑁𝐸6_R+deep forest 0.969 0.969 
𝐿𝐼𝑁𝐸}_R+deep forest 0.971 0.973 
AROPE+SVM 0.957 0.943 
AROPE+RF 0.977 0.977 
AROPE+DNN 0.976 0.975 
𝐿𝐼𝑁𝐸6_R+SVM 0.929 0.922 
𝐿𝐼𝑁𝐸6_R+RF 0.964 0.964 
𝐿𝐼𝑁𝐸6_R+DNN 0.955 0.953 
𝐿𝐼𝑁𝐸}_R+SVM 0.941 0.926 
𝐿𝐼𝑁𝐸}_R+RF 0.965 0.967 
𝐿𝐼𝑁𝐸}_R+DNN 0.961 0.958 
AOPEDF 0.985 0.985 

 
Note: AUROC: the area under ROC curve; AUPR; the area under PR; RF: 
standard random forest; SVM: support vector machine; DNN: deep neural network. 
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Supplementary Table S6. Performance of the AOPEDF models built from 15 
single network separately and the total 15 networks.  
 

Network AUROC AUPR 
Drug-drug 0.8020±0.0050 0.7960±0.0099 
Drug-disease 0.8054±0.0030 0.8067±0.0034 
Drug-side-effect 0.8095±0.0040 0.8091±0.0032 
Drugsim1 0.8083±0.0025 0.8011±0.0044 
Drugsim2 0.8058±0.0062 0.8011±0.0108 
Drugsim3 0.8099±0.0098 0.8034±0.0136 
Drugsim4 0.8118±0.0016 0.8031±0.0023 
Drugsim5 0.8121±0.0036 0.8113±0.0088 
Drugsim6 0.8046±0.0019 0.7910±0.0047 
Drugs 0.8204±0.0017 0.8187±0.0015 
Protein-protein 0.8877±0.0021 0.8816±0.0034 
Protein-disease 0.8889±0.0031 0.8869±0.0032 
Proteinsim1 0.8982±0.0046 0.8858±0.0060 
Proteinsim2 0.8920±0.0015 0.8817±0.0040 
Proteinsim3 0.8654±0.0023 0.8580±0.0044 
Proteinsim4 0.8949±0.0023 0.8872±0.0024 
Proteins 0.9020±0.0021 0.8947±0.0005 
Total 0.9831±0.0008 0.9840±0.0007 

 
Note: 
Drugsim1: using drug chemical similarity network 
Drugsim2: using drug therapeutic similarity network 
Drugsim3: using drug target sequence similarity network 
Drugsim4: using drug Gene Ontology (GO) biological process similarity network 
Drugsim5: using drug GO cellular component similarity network 
Drugsim6: using drug GO molecular function similarity network 
Drugs: using all drug-related networks 
Proteinsim1: using protein sequence similarity network 
Proteinsim2: using protein Gene Ontology (GO) biological process similarity 
network 
Proteinsim3: using protein GO cellular component similarity network 
Proteinsim4: using protein GO molecular function similarity network 
Proteins: using all protein-related networks 
Total: using all 15 networks. 
 
We used each network separately to validate the contribution of integrating 15 
networks, and observe the influence of each single network. The deep forest we 
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use contains two random forests, two completely-random tree forests and two 
gradient boosting tree forests, each forest contains 100 trees. From the 
experiment results we can find that integrating multiple networks performs better 
than using single network. Besides, using both drug-related network and protein-
related network performs better than using only one kind of network. 
 
 
Supplementary Table S7. Performance of the AOPEDF models built from 14 
network separately by leaving each network out separately. 
 

Remove AUROC AUPR 
Drug-drug 0.8621±0.0062 0.8649±0.0083 
Drug-disease 0.8646±0.0050 0.8686±0.0056 
Drug-side effect 0.8622±0.0041 0.8673±0.0078 
Drugsim1 0.8608±0.0066 0.8652±0.0084 
Drugsim2 0.8640±0.0070 0.8683±0.0092 
Drugsim3 0.8680±0.0052 0.8686±0.0093 
Drugsim4 0.8567±0.0112 0.8544±0.0119 
Drugsim5 0.8643±0.0043 0.8640±0.0074 
Drugsim6 0.8563±0.0092 0.8576±0.0096 
Protein-protein 0.8517±0.0114 0.8563±0.0098 
Protein-disease 0.8475±0.0099 0.8582±0.0106 
Proteinsim1 0.8579±0.0070 0.8568±0.0034 
Proteinsim2 0.8643±0.0125 0.8669±0.0113 
Proteinsim3 0.8577±0.0060 0.8583±0.0101 
Proteinsim4 0.8540±0.0056 0.8610±0.0094 
All 15 networks 0.8682±0.0066 0.8698±0.0050 

Note: 
Drugsim1: remove drug chemical similarity network 
Drugsim2: remove drug therapeutic similarity network 
Drugsim3: remove drug sequence-derived drug-drug similarity network 
Drugsim4: remove drug Gene Ontology (GO) biological process similarity network 
Drugsim5: remove drug GO cellular component similarity network 
Drugsim6: remove drug GO molecular function similarity network 
Proteinsim1: remove protein sequence similarity network 
Proteinsim2: remove protein Gene Ontology (GO) biological process similarity 
network 
Proteinsim3: remove protein GO cellular component similarity network 
Proteinsim4: remove protein GO molecular function similarity network 
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Note: We left each single network out separately and using the reminding 14 
networks to build models. We repeated each experiment in 5 times and standard 
deviation was shown. 
 
 
Supplementary Table S8. The robustness to the hyper-parameter settings. We 
use two random forests, two completely-random tree forests and two gradient 
boosting tree forests. We vary the number of trees in each forest, and observe 
the performance. From the results, we find that the prediction performance 
remains stable under different tree number settings. 
 

Tree numbers AUROC AUPR 
50 0.9824+0.0013 0.9832+0.0017 
100 0.9831+0.0008 0.9840+0.0007 
200 0.9837+0.0007 0.9843+0.0010 
500 0.9851+0.0009 0.9852+0.0009 
600 0.9840+0.0009 0.9849+0.0008 
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Supplementary Figures 

 
Supplementary Figure S1. Performance of different methods on the 

experimentally validated drug-target network (Supplementary Tables 1 and 2). (A) 

Receiver operating characteristic (ROC) curves of prediction results obtained by 

applying AOPEDF and five previously reported methods in 5-fold cross-validation. 

(B) Precision-recall (PR) curves for AOPEDF and other methods in 5-fold cross-

validation. AUROC: the area under ROC curve; AUPR: the area under PR curve. 

 

A 

B 
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Supplementary Figure S2. Performance of AOPEDF and deepWalk (Zong, et al., 

2017) on the experimentally validated drug-target network. (A) Receiver operating 

characteristic (ROC) curves of prediction results obtained by applying AOPEDF 

and deepWalk in 5-fold cross-validation. (B) Precision-recall (PR) curves for 

AOPEDF and deepWalk in 5-fold cross-validation. AUROC: the area under ROC 

curve; AUPR: the area under PR curve. We performed both deepWalk+IMC 

(Inductive matrix completion) and deepWalk + deepforest. 
  

A 

B 
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